Activated CaMKII couples GluN2B and casein kinase 2 to control synaptic NMDA receptors.
نویسندگان
چکیده
Synaptic activity triggers a profound reorganization of the molecular composition of excitatory synapses. For example, NMDA receptors are removed from synapses in an activity- and calcium-dependent manner, via casein kinase 2 (CK2) phosphorylation of the PDZ ligand of the GluN2B subunit (S1480). However, how synaptic activity drives this process remains unclear because CK2 is a constitutively active kinase, which is not directly regulated by calcium. We show here that activated CaMKII couples GluN2B and CK2 to form a trimolecular complex and increases CK2-mediated phosphorylation of GluN2B S1480. In addition, a GluN2B mutant, which contains an insert to mimic the GluN2A sequence and cannot bind to CaMKII, displays reduced S1480 phosphorylation and increased surface expression. We find that although disrupting GluN2B/CaMKII binding reduces synapse number, it increases synaptic-GluN2B content. Therefore, the GluN2B/CaMKII association controls synapse density and PSD composition in an activity-dependent manner, including recruitment of CK2 for the removal of GluN2B from synapses.
منابع مشابه
DAPK1 Mediates LTD by Making CaMKII/GluN2B Binding LTP Specific.
The death-associated protein kinase 1 (DAPK1) is a potent mediator of neuronal cell death. Here, we find that DAPK1 also functions in synaptic plasticity by regulating the Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII). CaMKII and T286 autophosphorylation are required for both long-term potentiation (LTP) and depression (LTD), two opposing forms of synaptic plasticity underlying lea...
متن کاملProtection of α-CaMKII from Dephosphorylation by GluN2B Subunit of NMDA Receptor Is Abolished by Mutation of Glu96 or His282 of α-CaMKII
Interaction of CaMKII and the GluN2B subunit of NMDA receptor is essential for synaptic plasticity events such as LTP. Synaptic targeting of CaMKII and regulation of its biochemical functions result from this interaction. GluN2B binding to the T-site of CaMKII leads to changes in substrate binding and catalytic parameters and inhibition of its own dephosphorylation. We find that CaMKIINα, a nat...
متن کاملP26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملSurface dynamics of GluN2B-NMDA receptors controls plasticity of maturing glutamate synapses.
NMDA-type glutamate receptors (NMDAR) are central actors in the plasticity of excitatory synapses. During adaptive processes, the number and composition of synaptic NMDAR can be rapidly modified, as in neonatal hippocampal synapses where a switch from predominant GluN2B- to GluN2A-containing receptors is observed after the induction of long-term potentiation (LTP). However, the cellular pathway...
متن کاملSynaptic NMDA receptors in basolateral amygdala principal neurons are triheteromeric proteins: physiological role of GluN2B subunits.
N-methyl-(D)-aspartate (NMDA) receptors are heteromultimeric ion channels that contain an essential GluN1 subunit and two or more GluN2 (GluN2A-GluN2D) subunits. The biophysical properties and physiological roles of synaptic NMDA receptors are dependent on their subunit composition. In the basolateral amygdala (BLA), it has been suggested that the plasticity that underlies fear learning require...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell reports
دوره 3 3 شماره
صفحات -
تاریخ انتشار 2013